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ABSTRACT

Neutral Delay Di�erential Equation (NDDE) of pantograph type has
been solved by developing a �fth order explicit multistep block method.
NDDE has become of great interest among researchers in its industrial
applications. In �nding the solution for the problem, a two-point explicit
multistep block method has been modelled by applying Taylor Series
interpolation polynomial. The proposed method will solve pantograph
NDDE at two points concurrently with the strategy of consistent step-
size. The implementation is based on multistep method Adam Bashforth
formula in predictor mode. In handling pantograph delay, Lagrange in-
terpolation polynomial needs to be applied to �nd the solution of delay
terms that are larger than the initial value given. The delay derivatives
are estimated using divided di�erence formula. The order and conver-
gence have been determined to ensure the reliability of the proposed
explicit block method. The stability analysis has been constructed using
test equation for NDDE. Numerical results obtained have shown that
the suggested method is suitable and applicable for solving pantograph
equation.
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1. Introduction

Recently, Neutral Delay Di�erential Equation has been increasingly applied as the
appropriate model in time delay problem especially in industry related to engineering.
Pantograph delay is one of the time delay system except that it is in a proportional
condition and the name is taken after the pantograph on train which is an apparatus
mounted on the roof of an electric train. Time delays frequently emerge in feedback
loops involving sensors and actuators. They constantly present in a structural test-
ing technique named as real-time dynamic substructuring. A feedback loop happens
when an output of a system are directed back or become the input in the next cy-
cle that forms a circuit or loop. These transmission systems are often occured in
communication technologies where the system includes a command device which the
control command is detected by a sensor and sends the informations to an actuator
that executes them by converting the signal's energy into mechanical motion. The
problem that has been faced by most engineers is when the time for the signal to
be received by controller has been delayed. This time delay problem should already
be taken into consideration at the early design stage as it is one of the factors that
in�uence the dynamic. The most particular remote-control system associated with
feedback loop is the one provided by human operator where the control command
will be issued to the control action and guided the system properly. This operation
can be found in remote control of cars, remote operation of large construction cranes,
trains, trams and cockpit control of an airplane's engines and control surfaces. With
the speedy evolution of communication technologies, the transmission system of es-
timated signals to a remote control center is becoming simpler and has given more
apportunities for researchers to suggest more solution for the problem.

2. Development of method

A series of numerical solutions have been introduced by Jackiewicz in the early
1980's. Jackiewicz (1982), Jackiewicz (1984), Jackiewicz (1986) and Jackiewicz (1987)
have proposed both one-step and multistep methods based on predictor-corrector
scheme for the numerical approach of NDDE. In 2010, Chen and Wang (2010) have
applied a variational iteration method (VIM) which is the analytical solution for
NDDE of pantograph delay. Continued by Biazar and Ghanbari (2012), where they
have presented the use of homotopy pertubation method (HPM) to solve NDDE with
proportional delay (pantograph equation). Both method have been compared with
previous two-stage order-one Runge-Kutta method by Wang et al. (2009) and one-leg
θ-method which has been discussed by Wang and Li (2007) previously. The VIM
has then being modi�ed by Ghaneai et al. (2012) to prove the e�ectiveness of the
method for solving proportional delay of NDDE. In order to control the convergence
region, they have introduced a new parameter for the approximate solution. The
modi�ed VIM has provide a simple way in adjusting the convergence region. In Lv and
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Gao (2013), the applicability of reproducing kernel Hilbert space method (RKHSM)
to solve NDDE with proportional delay has been proven where the performance of
RKHSM has been compared with the two-stage order-one Runge-Kutta method Wang
et al. (2009), one-leg θ-method Wang and Li (2007) and VIM Chen and Wang (2010).
Later, an implicit two-point one-block method for the numerical solution of NDDE
with pantograph type has been developed by Ishak et al. (2013) and the stability
properties of the method has been analysed by Ishak et al. (2014). Numerical results
obtained have achieved the desired accuracy. Ishak and Ramli (2015) have extended
the method in Ishak et al. (2013) into an implicit three-point one-block method using
variable step-size technique. The method's performance has been compared with
Ishak et al. (2013) and has shown to be accurate. After that, Seong and Majid (2015)
have implemented the use predictor-corrector method into a new fully implicit two-
step block method of order four. The method is suitable to solve �rst order NDDE
with pantograph type problem. An analytical exact solution of NDDE is then being
introduced by Ahmad and Fatima (2016) known as Di�erential Transform method
(DTM). DTM has shown to be e�cient in restricting the convergence region and
producing estimate solution with only a few hand computation. Finally in 2017, Sakar
(2017) has improved a homotopy analysis method (HAM) for solving NDDE problem.
High-accuracy approximate solutions have been obtained after being compared with
previous analytical methods. The new idea of this research is to develop an explicit
block multistep method for the solution of NDDE since none of the researchers have
applied an explicit method in solving pantograph equation. Thus, an explicit two-
point multistep block method will be formulated and considered in this research as
an approach for solving NDDE with pantograph type.

3. Methodology

In this section, the analyses of �fth order two-point explicit multistep block
method (2PEBM5) for solving pantograph NDDE are discussed. The formulation, or-
der, convergence and stability properties of 2PEBM5 are being explained thoroughly.
A �rst order linear NDDE with pantograph type is given as shown below:

y′(x) = f(x, y(x), y(qx), y′(qx))

y(x) = φ(x).
[1]

0 < q < 1 is the restricted ratio for proportional delay while y(x) = φ(x) is its initial
function. qx is the delays terms while y(qx) and y′(qx) are the expressions of delay
solutions. The development of 2PEBM5 has been adapted from Majid and Suleiman
(2011) in Adam-Bashforth predictor mode. Lagrange interpolation polynomial and
forward divided di�erence will be applied to estimate the delay solutions, y(qx) and
y′(qx) respectively. 2PEBM5 will approximate the solution for NDDE problem at
two points concurrently.
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Figure 1: Two-point multistep block method

From Figure 1, the interval from xn−2 until xn is the �rst block while the second
block contains interval from xn to xn+2. The evaluated solutions of �rst block will be
applied as the initial values for the second block and the procedure will keep repeating
for the next iteration in another block.

3.1 Formulation of method

Based on Lambert (1973), a linear multistep method is given by:
k∑

j=0

αjyn+j = h

k∑
j=0

βjfn+j . [2]

A linear di�erence operator associated with [2]:

L[y(x) : h] =

k∑
j=0

[
αjy(x+ jh)− hβjy′(x+ jh)

]
. [3]

In order to evaluate y(xn+1) and y(xn+2), [3] will be expanded by using Taylor series
interpolation polynomial. Collecting all terms will produce:

L[y(x) : h] = C0y(x) + C1y
(1)(x) + ...+ Cph

py(p)(x). [4]

Following [2] to [4], the derivation of 2PEBM5 becomes:

yn+k + α0yn+(k−1) = h

k+3∑
i=0

βiy
′
[
x+ (i− (k + 3))h

]
yn+(k+1) + α0yn+(k−1) = h

k+4∑
i=1

βiy
′
[
x+ (i− (k + 4))h

] [5]

where the value of k is 1. After letting α0 = −1 and expanding individual terms of
y(x) and y′(x) in [5] by Taylor series will produce:[

y(x) + 5hy′(x) +
25

2
h2y′′(x) +

125

6
h3y′′′(x) +

625

24
h4yiv(x) +

625

24
h5yv(x)

]
=[

y(x) + 4hy′(x) + 8h2y′′(x) +
32

3
h3y′′′(x) +

32

3
h4yiv(x) +

128

15
h5yv(x)

]
+ hβ0[

y′(x)
]
+ hβ1

[
y′(x) + hy′′(x) +

1

2
h2y′′′(x) +

1

6
h3yiv(x) +

1

24
h4yv(x)

]
+ hβ2[

y′(x) + 2hy′′(x) + 2h2y′′′(x) +
4

3
h3yiv(x) +

2

3
h4yv(x)

]
+ hβ3[

y′(x) + 3hy′′(x) +
9

2
h2y′′′(x) +

9

2
h3yiv(x) +

27

8
h4yv(x)

]
+ hβ4[

y′(x) + 4hy′′(x) + 8h2y′′′(x) +
32

3
h3yiv(x) +

32

3
h4yv(x)

]

[6]
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and

[
y(xn+1) + 5hy′(xn+1) +

25

2
h2y′′(xn+1) +

125

6
h3y′′′(xn+1) +

625

24
h4yiv(xn+1)

+
625

24
h5yv(xn+1)

]
=
[
y(xn+1) + 3hy′(xn+1) +

9

2
h2y′′(xn+1) +

9

2
h3y′′′(xn+1)

+
27

8
h4yiv(xn+1) +

81

40
h5yv(xn+1)

]
+ hβ1

[
y′(xn+1)

]
+ hβ2

[
y′(xn+1)

+ hy′′(xn+1) +
1

2
h2y′′′(xn+1) +

1

6
h3yiv(xn+1) +

1

24
h4yv(xn+1)

]
+ hβ3

[
y′(xn+1) + 2hy′′(xn+1) + 2h2y′′′(xn+1) +

4

3
h3yiv(xn+1)

+
2

3
h4yv(xn+1)

]
+ hβ4

[
y′(xn+1) + 3hy′′(xn+1) +

9

2
h2y′′′(xn+1)

+
9

2
h3yiv(xn+1) +

27

8
h4yv(xn+1)

]
+ hβ5

[
y′(xn+1) + 4hy′′(xn+1)

+ 8h2y′′′(xn+1) +
32

3
h3yiv(xn+1) +

32

3
h4yv(xn+1)

]
.

[7]

Collecting all terms in [6] and [7] yields to the following block:

yn+1 = yn +
h

720

[
1901fn − 2774fn−1 + 2616fn−2 − 1274fn−3 + 251fn−4

]
yn+2 = yn +

h

90

[
269fn+1 − 266fn + 294fn−1 − 146fn−2 + 29fn−3

]
.

[8]

The formulation produced above is a two-point explicit multistep block method
(2PEBM5) in predictor Adam-Bashforth formula. 2PEBM5 will be applied to solve
NDDE with pantograph type.

3.2 Order and error constant

According to Lambert (1973), the order and error constant of 2PEBM can be
obtained by applying:

Cp =

k∑
j=0

[ jpαj

p!
− jp−1βj

(p− 1)!

]
[9]
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where p is the order of 2PEBM as long as C0 = C1 = · · · = Cp = 0 and if Cp+1 6= 0,
then it is called as an error constant. Applying [9]:

C0 =

k∑
j=0

αj =

[
0
0

]
, C3 =

k∑
j=0

(
j3αj

3!
− j2βj

2!
) =

[
0
0

]
,

C1 =

k∑
j=0

(jαj − βj) =
[

0
0

]
, C4 =

k∑
j=0

(
j4αj

4!
− j3βj

3!
) =

[
0
0

]
,

C2 =

k∑
j=0

(
j2αj

2!
− jβj) =

[
0
0

]
, C5 =

k∑
j=0

(
j5αj

5!
− j4βj

4!
) =

[
0
0

]
.

Thus, 2PEBM is of order 5 with an error constant of:

C6 =

k∑
j=0

(
j6αj

6!
− j5βj

5!
) =

[
95
288
14
45

]
.

3.3 Order of convergence

The aproximate solution for 2PEBM5 has been denoted in equation [8] while the
exact solution is:

Yn+1 =yn +
h

720

[
1901fn − 2774fn−1 + 2616fn−2 − 1274fn−3 + 251fn−4

]
+

95

288
h6Y (6)(ξn) +R6,

Yn+2 =yn +
h

90

[
269fn+1 − 266fn + 294fn−1 − 146fn−2 + 29fn−3

]
+

14

45
h6Y (6)(ξn) +R6.

[10]

The di�erence between both exact and approximate solutions will be measured and
Yn+1 − yn+1 will be let as dn+1 while Yn+2 − yn+2 and Yn − yn as dn+2 and dn
respectively. After assuming the existence of boundary B for |Y 6(ξn)|:

|dn+1| ≤
(
1 +

1901

720
hL
)
|dn| −

2774

720
hL|dn−1|+

2616

720
hL|dn−2| −

1274

720
hL|dn−3|

+
251

720
hL|dn−4|+

95

288
h6B +O(h7),

|dn+2| ≤
269

90
hL|dn+1|+

(
1− 266

90
hL
)
|dn|+

294

90
hL|dn−1| −

146

90
hL|dn−2|

+
29

90
hL|dn−3|+

14

45
h6B +O(h7).

[11]

where R6 is the remaider term,

Rp+1 = Cp+2h
p+2Y p+2(ξ) = O(h7). [12]

Here p + 2 ≥ 1 is called the order of convergence. Thus, from [11], the order of
convergence is seven.
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3.4 Consistency and zero-stability

Formula stated in [2] is converged when it is consistent and zero-stable. The
conditions for 2PEBM5 to be consistent are, 2PEBM5 needs to have order p ≥ 1 and
follows two characteristics shown below:

k∑
j=0

αj = 0 and

k∑
j=0

jαj =

k∑
j=0

βj . [13]

2PEBM5 is proved to have order 5 = p ≥ 1. Rewritten [8]:[
1 0
0 1

] [
yn+1

yn+2

]
=

[
0 1
0 1

] [
yn−1

yn

]
+ h

[
0 251

720

0 0

] [
fn−5

fn−4

]
+ h[

− 1274
720

2616
720

29
90

− 146
90

] [
fn−3

fn−2

]
+ h

[
− 2774

720
1901
720

294
90

− 266
90

] [
fn−1

fn

]
+ h[

0 0
269
90

0

] [
fn+1

fn+2

] [14]

where [14] is equivalent to:

A3YN+3 = A2YN+2 + h

3∑
j=0

BjFN+j . [15]

Conditions in [13] are satis�ed when:

k∑
j=0

αj =

7∑
j=0

αj =

[
0
0

]
followed by:

k∑
j=0

jαj =

7∑
j=0

jαj =

k∑
j=0

βj =

5∑
j=0

βj =

[
1
2

]
.

Then, 2PEBM5 is zero-stable as there is no root of:

ρ(ξ) =

k∑
j=0

αjξ
j = 0 [16]

has modulus greater than one:

ρ(ξ) =

7∑
0

αjξ
j =

[
ξ5(−1 + ξ)
ξ5(−1 + ξ2)

]
.

Hence, 2PEBM5 is proved to be converged since it satis�ed both properties of con-
sistent and zero-stable.
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3.5 Stability of method

Linear test equation for NDDE is given by:

3∑
j=0

AjYN+j = h

3∑
j=0

Bj

(
aYN+j + bYN+j−m + cY ′N+j−m

)
. [17]

Letting H1 = ha and H2 = hb, [17] will become:

(A0 −H1B0)YN + (A1 −H1B1)YN+1 + (A2 −H1B2)YN+2 + (A3 −H1B3)

YN+3 − (H2B0 + cB0)YN−m − (H2B1 + cB1)YN+1−m − (H2B2 + cB2)

YN+2−m − (H2B3 + cB3)YN+3−m = 0.

[18]

Choosing m = 1, then the characteristic polynomial of NP-stability 2PEBM5:

π(t) = det|(A0 −B0H1)t
m + (A1 −B1H1)t

1+m + (A2 −B2H1)t
2+m

+ (A3 −B3H1)t
3+m − (B0H2 + cB0)t

0 − (B1H2 + cB1)t
1

− (B2H2 + cB2)t
2 − (B3H2 + cB3)t

3|
= 0.

[19]

The NP-stability region for 2PEBM5 shown in Figure 2 lie inside the close region.

Figure 2: NP-stability for 2PEBM5

As stated by Aziz (2015),

De�nition 3.1. For the step-size h, if a, b and c are complex, the region RNP in the
(H1, H2)−plane is called the NP-stability region if for any (H1, H2) ∈ RNP .

NP-stability term originally introduced by Bellen et al. (1988) for neutral de-
lay di�erential equation with analogous stability properties with ordinary di�erential
equation. Since the set of all roots in stability polynomial obtained for the method
are |t| < 1, therefore, 2PEBM5 is said to be absolute stable.
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4. Implementation of method

2PEBM5 has been proposed to solved NDDE with pantograph type in [1]. As
known by many researchers, multistep method need to have previous values for it
to be applied in solving di�erential equations. Thus, before applying 2PEBM5, �ve
initial values need to be approximated �rst. In this research, Runge-Kutta order 4
(RK4) has been chosen to evaluate the initial solutions for NDDE. As the delay terms
and its derivative also need to be considered, a Lagrange interpolation polynomial and
di�erence formula have been used in estimating both of the delay solutions, y(qx) and
y′(qx) respectively. On the �rst few iterations, backward divided di�erence shown
below is applied to solve the delay derivative as the estimated values are not enough
to complete the calculations:

y′(qx) =
y(qx)− (y(qx)− h)

h
. [20]

As the number of iterations are complete to be taken as the delay derivative's calcu-
lation, a forward divided di�erence is the being applied:

y′(qx) =
(y(qx) + h)− y(qx)

h
. [21]

For delay terms without the presence of its derivative, the application of Lagrange in-
terpolation polynomial will be used if none of the delay solutions have been calculated
in previous iteration. The formula of Lagrange formula is as follows:

P (x) = Ln,0(x)f(x0) + . . .+ Ln,n(x)f(xn)

=

n∑
k=0

f(xk)Ln,k(x)
[22]

where,

Ln,k(x) =

n∏
i=0
i 6=k

(x− xi)
(xk − xi)

k = 0, 1, . . . , n.

The forward and backward divided di�erence formulas given above are of order 2.
Any order of divided di�erence formula is suitable to be applied in di�erential equa-
tions supposedly. However, it is hard to handle a pantograph equation as the delay in
proportional condition is sensitive to be evaluated using higher order formula. Thus,
a new initiative in using lower order formula is introduced in this research. The algo-
rithm shown below have been bulit in C programme with constant step-size technique.
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Algorithm

Step 1: Input the given initial values of a = x0, b = xn, h and N = b−a
h
.

Step 2: RK4 is applied for approximating the starting values.
Step 3: For i = 1, 3, . . .

The approximate value yn+i is evaluated by using:

yn+i = yn + h
720

[
1901fn+i−1 − 2774fn+i−2 + 2616fn+i−3 − 1274fn+i−4

+251fn+i−5

]
.

Step 4: For i = 2, 4, . . .
The approximate value yn+i is evaluated by using:

yn+i = yn + h
90

[
269fn+i−1 − 266fn+i−2 + 294fn+i−3 − 146n+i−4

+29fn+i−5

]
.

Step 5: If none the delay terms have been calculated in previous iteration, then
y(qx) need to be solved by using Lagrange interpolation polynomial:

P (x) = Ln,0(x)f(x0) + . . .+ Ln,n(x)f(xn)

=

n∑
k=0

f(xk)Ln,k(x).

Step 6: y′(x− τi) is obtained by applying backward di�erence formula for the
�rst few iteration and forward di�erence formula as the number of
delays are adequate to be taken as approximate value for the next
iteration.

Step 7: The maximum and average errors, total steps, function evaluations and
time taken are estimated.

Step 8: End.

5. Numerical results and discussions

Three examples of pantograph delay with exact solutions have been solved in this
section by using 2PEBM5. The accuracy and competency of 2PEBM5 has also been
proved. Example 1 and 3 have been taken from Ishak et al. (2014) while Example 2
is taken from Seong and Majid (2015). 2PEBM5 is being compared with a two-point
one-block method of order 5 (2P1B5) and a two-point multistep block method of
order 4 (2PBM4). Both methods have been compared in terms of total steps, average
and maximum errors that have been computed. The notations below are used in
Table 1 - Table 3.
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h Step size
MTD Method
FCN Total function calls
TS Total Step
TIME Time Taken
AVERE Average Error
MAXE Maximum Error
2PEBM5 Two-point Explicit Multistep Block Method (Order 5)
2P1B5 Two-point One-block Method from Ishak et al. (2014) (Order 5)
2PBM4 Two-point Multistep Block Method from Seong and Majid (2015)

(Order 4)
5e-7 5× 10−7

Example 5.1. Ishak et al. (2014)

y′(x) = −y(x) + 1

2
y
(x
2

)
+

1

2
y′
(x
2

)
, x ∈ [0, 1]

y(0) = 1

Exact solution: y(x) = e−x.

Table 1: Numerical results for Example 5.1.

MTD h FCN TS MAXE AVERE TIME(s)
0.1 8 7 2.9778e-04 2.1363e-04 0.172

2PEBM5 0.01 53 52 2.4802e-07 3.9767e-07 0.188
0.001 503 502 2.4552e-10 4.1900e-10 0.203
0.1 11 10 1.9747e-04 2.0830e-04 0.255

ABM5 0.01 101 100 1.8527e-07 3.0378e-07 0.265
0.001 1001 1000 1.8407e-10 3.1482e-10 0.298
0.1 41 10 1.9899e-02 4.3734e-02 0.267

RK4 0.01 401 100 3.2283e-03 7.3136e-03 0.274
0.001 4001 1000 1.0010e-03 1.0785e-03 0.341

MTD TOL TS AVERE MAXE

10−2 20 7.3136e-04 1.8351e-03
10−4 27 1.8858e-05 2.9229e-05

2P1B5 10−6 71 9.0282e-06 2.1266e-05
10−8 166 1.1494e-06 2.1357e-06
10−10 236 4.5605e-08 5.2514e-08

Malaysian Journal of Mathematical Sciences 117



Ismail, N. I. N., Majid, Z. A. & Senu, N.

Example 5.2. Seong and Majid (2015)

y′(x) = sin(x)y(x) + cos
(x
2

)
y
(x
2

)
− sin

(x
2

)
y′
(x
2

)
+ cos(x)− sin2(x), x ∈ [0, 1]

y(0) = 0

Exact solution: y(x) = sin(x).

Table 2: Numerical results for Example 5.2.

MTD h FCN TS MAXE AVERE TIME(s)
0.1 8 7 1.3642e-03 4.5641e-03 0.182

2PEBM5 0.01 53 52 1.1020e-04 4.4479e-0 0.193
0.001 503 502 1.0871e-05 4.4689e-05 0.208
0.1 11 10 3.8358e-03 1.4755e-03 0.260

ABM5 0.01 101 100 4.4968e-04 1.1619e-04 0.266
0.001 1001 1000 4.4753e-05 1.0938e-05 0.297
0.1 41 10 3.4118e-02 1.8734e-02 0.266

RK4 0.01 401 100 2.7846e-03 1.3602e-03 0.304
0.001 4001 1000 2.7147e-04 1.3067e-04 0.325

MTD h FCN AVERE MAXE
0.1 16 6.9355e-04 7.6850e-04

2PBM4 0.01 148 1.3081e-05 1.5352e-05
0.001 1498 1.7775e-07 2.2373e-07

Example 5.3. Ishak et al. (2014)

y′(x) = −y(x) + 1

10
y
(4
5
x
)
+

1

2
y′
(4
5
x
)
+
( 8

25
x− 1

2

)
e−

4
5
x + e−x, x ∈ [0, 1]

y(0) = 0

Exact solution: y(x) = xe−x.

Table 3: Numerical results for Example 5.3.

MTD h FCN TS MAXE AVERE TIME(s)
0.1 8 7 2.8366e-04 4.0025e-04 0.187

2PEBM5 0.01 53 52 5.9000e-07 3.7166e-07 0.198
0.001 503 502 6.2781e-10 3.6825e-10 0.213
0.1 11 10 2.7316e-04 2.6386e-04 0.268

ABM5 0.01 101 100 2.7581e-07 4.4952e-07 0.286
0.001 1001 1000 2.7590e-10 4.7159e-10 0.306
0.1 41 10 1.1889e-02 4.0247e-02 0.285

RK4 0.01 401 100 1.9778e-02 2.5258e-02 0.292
0.001 4001 1000 2.1540e-02 2.3759e-02 0.337

MTD TOL TS AVERE MAXE

10−2 70 1.2275e-02 4.5486e-02
10−4 97 3.9287e-04 1.1403e-03

2P1B5 10−6 118 1.6162e-06 4.8664e-06
10−8 173 2.7266e-07 4.8730e-07
10−10 300 1.7216e-08 3.9765e-08
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Numerical results for Example 1 - 3 have been tabulated in Table 1 - Table 3
respectively. From the obtained results in Example 1, 2PEBM5 has produced average
and maximum errors at 10−7 even when the number of steps are 52. As for 2P1B5
in variable step size strategy, the average and maximum errors are 10−6 at a total
step of 166 which is doubled from 2PEBM5. The total time estimated for 2PEBM5
is also lesser than ABM5 and RK4 since the proposed method is a block method
which produced less computational e�ort. In Example 2, the function evaluation for
2PEBM5 is lesser than 2PBM4 even though 2PEBM5 is of order �ve and 2PBM4 is of
order 4. A method of lower order supposedly has lower function evaluation than the
higher order method. But, the theory does not applied for 2PEBM5 which has shown
to outperform fourth order method in terms of function calls. The same condition
occurred in Example 3 where both maximum and average errors are 10−4 even at
total step 7 while for 2P1B5, the average error is 10−4 and maximum error 10−3 at
total step 97. The maximum and average error for 2PEBM5 have also comparable
to ABM5 eventhough 2PEBM5 is an explicit method. The advantages of applying
2PEBM5 are, it has reduced the total step taken, function evaluation called and the
computational time consumed. Explicit method has also provided simpler calculation
than an implicit method as it is an independent method which does not depend on
other values and only a single formula is needed to complete an iteration. Besides,
many authors have neglected the uses and advantages of explicit method, thus the
application of 2PEBM5 in this research is an approach to prove that explicit method
is performing well with other method. Implicit method has been said theoretically
and proved numerically to have better and accurate results compared to explicit
method, but in NDDE case, explicit method seems to cope well with the delay terms.
The delay is known to be slow while explicit method is said to be less accurate
than any implicit method. Thus, they are suitable to be pair up as they already
share the characteristic. In terms of accuracy, 2PEBM5 has produced comparable
results compared to the implicit 2P1B5 and 2PBM4. The total step and function
evaluation between those methods have also shown a big di�erence. These analyses
and parameters have highlighted the bene�ts of implementing explicit block method
for the numerical solutions of NDDE with pantograph type.

6. Conclusion

In this article, 2PEBM5 has been implemented in solving �rst order linear NDDE
with pantograph type by producing two approximate solutions in a single step with
constant step-size technique. Numerical results obtained have shown that 2PEBM5 is
suitable and applicable to be implemented as it gives better results than ABM5, RK4,
2P1B5 and 2PBM4. Additionally, 2PEBM5 has reduced the step taken, function
called and time consumed as it produces faster computational calculation.
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